Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 594
Filtrar
1.
Fitoterapia ; 175: 105938, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38565379

RESUMO

Five new B-seco-limonoids, namely toonanoronoids A-E (1-5), in conjunction with three previously reported compounds, were isolated from the EtOAc extract of the twigs and leaves of Toona ciliata var. yunnanensis. Their structures were elucidated through comprehensive spectroscopic and X-ray crystallographic analysis. The cytotoxic activities of new compounds against five human tumor cell lines (HL-60, SMMC-7721, A549, MCF-7, and SW480) were screened, Compounds 4 and 5 exerted inhibition toward two tumor cell lines (HL-60, SW-480) with IC50 values between 1.7 and 5.9 µM.

2.
PeerJ ; 12: e17227, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38618567

RESUMO

Background: Nasal sprays are widely used in treating nasal and sinus diseases; however, there are very few studies on the drug delivery efficiency of nasal sprays. In this study, the drug delivery efficiency of three different nasal spray devices was evaluated in vitro using a 3D printed cast model of nasal cavity. Methods: Three nasal spray devices with different nozzles and angles of administration were used in the 3D model of the nasal cavity and paranasal sinuses. The spraying area (SA), maximal spraying distance (MSD), and spraying distribution scores on the nasal septum and lateral nasal wall were recorded. Results: Different nasal spray devices have their own characteristics, including volume of each spray, SA, and plume angle. The SA of the three nozzles on the nasal septum increased with an increasing angle of administration. When the angle of administration was 50°, each nozzle reached the maximal SA. There was no statistically significant difference in MSD among the three nozzles at the three angles. The total scores for each nozzle using the three different spraying angles were as follows: nozzle A, 40° > 30° > 50°; nozzle B, 30° > 40° > 50°; and nozzle C, 30° > 40° > 50°. The total scores for different nozzles using the same angle were statistically significantly different and the scores for nozzle C were the highest. Nozzle C had the minimum plume angle. None of the three nozzles could effectively delivered drugs into the middle meatus at any angle in this model. Conclusions: The design of the nozzle affects drug delivery efficiency of nasal spray devices. The ideal angle of administration is 50°. The nozzle with smaller plume angle has higher drug delivery efficiency. Current nasal spray devices can easily deliver drugs to most areas of the nasal cavity, such as the turbinate, nasal septum, olfactory fissure, and nasopharynx, but not the middle meatus. These findings are meaningful for nozzle selection and device improvements.


Assuntos
Cavidade Nasal , Sprays Nasais , Sistemas de Liberação de Medicamentos , Septo Nasal , Impressão Tridimensional
3.
Front Biosci (Landmark Ed) ; 29(3): 127, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38538255

RESUMO

BACKGROUND: Gastric cancer (GC) stands as one of the most prevalent cancer types worldwide, holding the position of the second leading cause of cancer-related deaths. Gastric lesions represent pathological alterations to the gastric mucosa, with an elevated propensity to advance to gastric cancer. Limited research has explored the potential of stem cells in the treatment of gastric lesions. METHODS: This study aimed to explore the potential of intravenous transplantation of labeled bone marrow-derived mesenchymal stem cells (BMMSCs) to inhibit the progression of precancerous gastric lesions. RESULTS: In the gastric lesion disease model group, the rat tissue exhibited noteworthy mucosal atrophy, intestinal metaplasia, dysplasia, and inflammatory cell infiltration. Following the infusion of BMMSCs, a notable decrease in gastric lesions was found, with atrophic gastritis being the sole remaining lesion, which was confirmed by morphological and histological examinations. BMMSCs that were colonized at gastric lesions could differentiate into epithelial and stromal cells, as determined by the expression of pan-keratin or vimentin. The expression of vascular endothelial growth factor was significantly elevated following BMMSC transplantation. BMMSCs could also upregulate the production of humoral immune response cytokines, including interleukin (IL)-4 and IL-10, and downregulate the production of IL-17 and interferon-gamma, which could be highly associated with the cellular immune response and inflammation severity of the lesions. CONCLUSIONS: BMMSC transplantation significantly reduced inflammation and reversed gastric lesion progression.


Assuntos
Células-Tronco Mesenquimais , Lesões Pré-Cancerosas , Neoplasias Gástricas , Ratos , Animais , Neoplasias Gástricas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Medula Óssea/patologia , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patologia , Células-Tronco Mesenquimais/metabolismo , Inflamação/metabolismo , Lesões Pré-Cancerosas/terapia , Lesões Pré-Cancerosas/metabolismo , Lesões Pré-Cancerosas/patologia
4.
Cancer Lett ; 589: 216795, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38556106

RESUMO

The immune microenvironment constructed by tumor-infiltrating immune cells and the molecular phenotype defined by hormone receptors (HRs) have been implicated as decisive factors in the regulation of breast cancer (BC) progression. Here, we found that the infiltration of mast cells (MCs) informed impaired prognoses in HR(+) BC but predicted improved prognoses in HR(-) BC. However, molecular features of MCs in different BC remain unclear. We next discovered that HR(-) BC cells were prone to apoptosis under the stimulation of MCs, whereas HR(+) BC cells exerted anti-apoptotic effects. Mechanistically, in HR(+) BC, the KIT ligand (KITLG), a major mast cell growth factor in recruiting and activating MCs, could be transcriptionally upregulated by the progesterone receptor (PGR), and elevate the production of MC-derived granulin (GRN). GRN attenuates TNFα-induced apoptosis in BC cells by competitively binding to TNFR1. Furthermore, disruption of PGR-KITLG signaling by knocking down PGR or using the specific KITLG-cKIT inhibitor iSCK03 potently enhanced the sensitivity of HR(+) BC cells to MC-induced apoptosis and exerted anti-tumor activity. Collectively, these results demonstrate that PGR-KITLG signaling in BC cells preferentially induces GRN expression in MCs to exert anti-apoptotic effects, with potential value in developing precision medicine approaches for diagnosis and treatment.


Assuntos
Neoplasias da Mama , Fator de Células-Tronco , Humanos , Feminino , Fator de Células-Tronco/genética , Fator de Células-Tronco/metabolismo , Mastócitos/patologia , Neoplasias da Mama/patologia , Retroalimentação , Apoptose , Microambiente Tumoral
5.
Mikrochim Acta ; 191(4): 201, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489138

RESUMO

Nowadays, the frequent occurrence of food adulteration makes glucose detection particularly important in food safety and quality management. The quality and taste of honey are closely related to the glucose content. However, due to the drawbacks of expensive equipment, complex operating procedures, and time-consuming processes, the application scope of traditional glucose detection methods is limited. Hence, this study developed a photoelectric chemical (PEC) sensor, which is composed of a photoactive material of bismuth tungstate (Bi2WO6) with titanium dioxide (TiO2) and glucose oxidase (GOD), for simple and rapid detection of glucose. Notably, the composites' absorption prominently increased in the visible light region, and the photo-generated electron-hole pairs were efficiently separated by virtue of the unique nanostructure system, thus playing a crucial role in facilitating PEC activity. In the presence of dissolved oxygen, the photocurrent intensity was enhanced by H2O2 generated from glucose under electro-oxidation specifically catalyzed by GOD fixed on the modified electrode. When the working potential was 0.3 V, the changes of photocurrent response indicated that the PEC enzyme biosensor provides a low detection limit (3.8 µM), and a wide linear range (0.008-8 mM). This method has better selectivity in honey samples and broad application prospects in clinical diagnosis for future.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Peróxido de Hidrogênio , Técnicas Biossensoriais/métodos , Luz , Glucose , Glucose Oxidase/química
6.
Nat Commun ; 15(1): 1938, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431679

RESUMO

Phonon splitting of the longitudinal and transverse optical modes (LO-TO splitting), a ubiquitous phenomenon in three-dimensional polar materials, will break down in two-dimensional (2D) polar systems. Theoretical predictions propose that the LO phonon in 2D polar monolayers becomes degenerate with the TO phonon, displaying a distinctive "V-shaped" nonanalytic behavior near the center of the Brillouin zone. However, the full experimental verification of these nonanalytic behaviors has been lacking. Here, using monolayer hexagonal boron nitride (h-BN) as a prototypical example, we report the comprehensive and direct experimental verification of the nonanalytic behavior of LO phonons by inelastic electron scattering spectroscopy. Interestingly, the slope of the LO phonon in our measurements is lower than the theoretically predicted value for a freestanding monolayer due to the screening of the Cu foil substrate. This enables the phonon polaritons in monolayer h-BN/Cu foil to exhibit ultra-slow group velocity (~5 × 10-6 c, c is the speed of light) and ultra-high confinement (~ 4000 times smaller wavelength than that of light). These exotic behaviors of the optical phonons in h-BN presents promising prospects for future optoelectronic applications.

7.
Phys Chem Chem Phys ; 26(12): 9687-9696, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38470341

RESUMO

Twisted bilayer graphene (tBLG) with C vacancies would greatly improve the density of states (DOS) around the Fermi level (EF) and quantum capacitance; however, the single-band tight-binding model only considering pz orbitals cannot accurately capture the low-energy physics of tBLG with C vacancies. In this work, a three-band tight-binding model containing three p orbitals of C atoms is proposed to explore the modulation mechanism of C vacancies on the DOS and quantum capacitance of tBLG. We first obtain the hopping integral parameters of the three-band tight-binding model, and then explore the electronic structures and the quantum capacitance of tBLG at a twisting angle of θ = 1.47° under different C vacancy concentrations. The impurity states contributed by C atoms with dangling bonds located around the EF and the interlayer hopping interaction could induce band splitting of the impurity states. Therefore, compared with the quantum capacitance of pristine tBLG (∼18.82 µF cm-2) at zero bias, the quantum capacitance is improved to ∼172.76 µF cm-2 at zero bias, and the working window with relatively large quantum capacitance in the low-voltage range is broadened in tBLG with C vacancies due to the enhanced DOS around the EF. Moreover, the quantum capacitance of tBLG is further increased at zero bias with an increase of the C vacancy concentration induced by more impurity states. These findings not only provide a suitable multi-band tight-binding model to describe tBLG with C vacancies but also offer theoretical insight for designing electrode candidates for low-power consumption devices with improved quantum capacitance.

8.
Micromachines (Basel) ; 15(2)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38399018

RESUMO

A two-channel, time-wavelength interleaved photonic analog-to-digital converter (PADC) system with a sampling rate of 10.4 GSa/s was established, and a concise method for measuring and data correcting the channel sampling timing walk-off of PADCs for signal recovery was proposed. The measurements show that for the two RF signals of f1 = 100 MHz and f2 = 200 MHz, the channel sampling timing walk-off was 12 sampling periods, which results in an ENOB = -0.1051 bits for the 100 MHz directly synthesized signal, while the ENOB improved up to 4.0136 bits using shift synthesis. In addition, the peak limit method (PLM) and normalization processing were introduced to reduce the impacts of signal peak jitter and power inconsistency between two channels, which further improve the ENOB of the 100 MHz signal up to 4.5668 bits. All signals were analyzed and discussed in both time and frequency domains. The 21.1 GHz signal was also collected and converted using the established two-channel PADC system with the data correction method, combining the PLM, normalization, and shift synthesis, showing that the ENOB increased from the initial -0.9181 to 4.1913 bits, which demonstrates that our method can be effectively used for signal recovery in channel-interleaved PADCs.

9.
bioRxiv ; 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38328107

RESUMO

Mutations in presenilin-1 (PSEN1) are the most common cause of familial, early-onset Alzheimer's disease (AD), typically producing cognitive deficits in the fourth decade. A variant of APOE, APOE3 Christchurch (APOE3ch) , was found associated with protection from both cognitive decline and Tau accumulation in a 70-year-old bearing the disease-causing PSEN1-E280A mutation. The amino acid change in ApoE3ch is within the heparan sulfate (HS) binding domain of APOE, and purified APOEch showed dramatically reduced affinity for heparin, a highly sulfated form of HS. The physiological significance of ApoE3ch is supported by studies of a mouse bearing a knock-in of this human variant and its effects on microglia reactivity and Aß-induced Tau deposition. The studies reported here examine the function of heparan sulfate-modified proteoglycans (HSPGs) in cellular and molecular pathways affecting AD-related cell pathology in human cell lines and mouse astrocytes. The mechanisms of HSPG influences on presenilin- dependent cell loss and pathology were evaluated in Drosophila using knockdown of the presenilin homolog, Psn , together with partial loss of function of sulfateless (sfl) , a homolog of NDST1 , a gene specifically affecting HS sulfation. HSPG modulation of autophagy, mitochondrial function, and lipid metabolism were shown to be conserved in cultured human cell lines, Drosophila , and mouse astrocytes. RNAi of Ndst1 reduced intracellular lipid levels in wild-type mouse astrocytes or those expressing humanized variants of APOE, APOE3 , and APOE4 . RNA-sequence analysis of human cells deficient in HS synthesis demonstrated effects on the transcriptome governing lipid metabolism, autophagy, and mitochondrial biogenesis and showed significant enrichment in AD susceptibility genes identified by GWAS. Neuron-directed knockdown of Psn in Drosophila produced cell loss in the brain and behavioral phenotypes, both suppressed by simultaneous reductions in sfl mRNA levels. Abnormalities in mitochondria, liposome morphology, and autophagosome-derived structures in animals with Psn knockdown were also rescued by simultaneous reduction of sfl. sfl knockdown reversed Psn- dependent transcript changes in genes affecting lipid transport, metabolism, and monocarboxylate carriers. These findings support the direct involvement of HSPGs in AD pathogenesis.

10.
Heliyon ; 10(3): e25290, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38333809

RESUMO

Al2O3 is considered a promising material for high-power microwave windows due to its low dielectric loss, excellent mechanical properties, and outstanding corrosion resistance. However, the inherent brittleness and low thermal conductivity pose significant challenges in achieving a dependable metal seal. In this study, vacuum brazing technology was employed to achieve brazing sealing between copper and single crystal Al2O3. The interface structure, mechanical properties, and sealing properties of the brazing joint were focused on. The brazed joints exhibited outstanding mechanical properties with an average shear strength of 207 MPa. The sealing performance of the Al2O3 window was conclusively determined to be excellent, as evidenced by the helium leakage rate and X-ray testing results. The dielectric properties and standing wave coefficient of Al2O3 window were analyzed using a vector network analyzer in combination with a quasi-optical resonator and free space test system. The results indicate that the Al2O3 window exhibits an extremely low dielectric loss of 10-5 magnitude at 95-98 GHz, accompanied by a standing wave coefficient below 2, which satisfies the requirements of high-power microwave windows.

11.
Anim Microbiome ; 6(1): 8, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38419121

RESUMO

BACKGROUND: The red-crowned crane is one of the vulnerable bird species. Although the captive population has markedly increased over the last decade, infectious diseases can lead to the death of young red-crowned cranes while few virological studies have been conducted. METHODS: Using a viral metagenomics approach, we analyzed the virome of tissues of the dead captive red-crowned crane with diarrhea symptoms in Dongying Biosphere Reserve, Shandong Province, China and feces of individual birds breeding at the corresponding captive breeding center, which were pooled separately. RESULTS: There is much more DNA and RNA viruses in the feces than that of the tissues. RNA virus belonging to the families Picornaviridae, and DNA viruses belonging to the families Parvoviridae, associated with enteric diseases were detected in the tissues and feces. Genomes of the picornavirus, genomovirus, and parvovirus identified in the study were fully characterized, which further suggested that infectious viruses of these families were possibly presented in the diseased red-crowned crane. CONCLUSION: RNA virus belonging to the families Picornaviridae, and DNA viruses belonging to the families Genomoviridae and Parvoviridae were possibly the causative agent for diarrhea of red-crowned crane. This study has expanded our understanding of the virome of red-crowned crane and provides a baseline for elucidating the etiology for diarrhea of the birds.

12.
Adv Mater ; 36(15): e2308415, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38265890

RESUMO

The topological Hall effect (THE) is the transport response of chiral spin textures and thus can serve as a powerful probe for detecting and understanding these unconventional magnetic orders. So far, the THE is only observed in either noncentrosymmetric systems where spin chirality is stabilized by Dzyaloshinskii-Moriya interactions, or triangular-lattice magnets with Ruderman-Kittel-Kasuya-Yosida-type interactions. Here, a pronounced THE is observed in a Fe-Co-Ni-Mn chemically complex alloy with a simple face-centered cubic (fcc) structure across a wide range of temperatures and magnetic fields. The alloy is shown to have a strong magnetic frustration owing to the random occupation of magnetic atoms on the close-packed fcc lattice and the direct Heisenberg exchange interaction among atoms, as evidenced by the appearance of a reentrant spin glass state in the low-temperature regime and the first principles calculations. Consequently, THE is attributed to the nonvanishing spin chirality created by strong spin frustration under the external magnetic field, which is distinct from the mechanism responsible for the skyrmion systems, as well as geometrically frustrated magnets.

13.
Environ Toxicol ; 39(5): 2869-2880, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38294069

RESUMO

BACKGROUND: Cisplatin (CDDP)-based chemotherapy has emerged as the primary treatment for muscle-invasive bladder cancer and metastatic bladder cancer. Nevertheless, a significant proportion of patients experience rapidly developed chemoresistance, leading to treatment ineffectiveness. Existing evidence suggests that chemoresistance is governed by various factors, including tumor stem cells, epithelial mesenchymal transition, and reactive oxygen species (ROS). However, limited research has been conducted on the role of PRDX2, a crucial ROS scavenger, in the modulation of chemoresistance in bladder cancer. METHODS: Cisplatin-resistant cell lines were established using the concentration gradient overlay method, and differentially expressed genes in resistant cells were screened through RNA sequencing. The expression of PRDX2 in cells and tissues was assessed using RT-qPCR, Western Blot, and immunohistochemistry. The expression of PRDX2 in bladder cancer and adjacent tissues was evaluated using a bladder cancer tissue microarray. Furthermore, the impact of PRDX2 knockdown on tumor formation and metastasis was investigated in vivo by applying subcutaneous tumor xenografts tail vein metastasis assays. RESULTS: We demonstrated that PRDX2 is significantly upregulated in bladder tumors and cisplatin-resistant bladder tumor cell lines. Overexpression of PRDX2 can promote tumor proliferation, migration, and invasion both in vitro and in vivo. We have found that knockdown of PRDX2 expression can effectively reverse cell resistance to cisplatin. Mechanistically, our findings suggest that PRDX2 is involved in regulating tumor stemness and epithelial-mesenchymal transition (EMT). Knockdown of PRDX2 affects the PI3K-AKT and mTOR signaling pathways, thereby influencing tumor stemness and EMT, ultimately impacting the chemotherapy resistance of the tumor. CONCLUSIONS: This study provides a new insight into the regulation of chemotherapy resistance in bladder cancer by PRDX2. Targeting PRDX2 can serve as a potent therapeutic target for chemotherapy resistance.


Assuntos
Cisplatino , Neoplasias da Bexiga Urinária , Humanos , Cisplatino/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Transição Epitelial-Mesenquimal/genética , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo
14.
Free Radic Biol Med ; 212: 360-374, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38171407

RESUMO

Evidence recently showed that pleiotropic cytokine interferon-gamma (IFN-γ) in the tumor microenvironment (TME) plays a positive role in hepatocellular carcinoma (HCC) progression through the regulation of liver cancer stem cells (LCSCs) in HCC. The present study explored the role and potential mechanism of mitochondrial programmed cell death-ligand 1 (PD-L1) and its regulation of ferroptosis in modulating the cancer stemness of LCSCs. It was shown that mimicking TME IFN-γ exposure increased the LCSCs ratio and cancer stemness phenotypes in HCC cells. IFN-γ exposure inhibited sorafenib (Sora)-induced ferroptosis by enhancing glutathione peroxidase 4 (GPX4) expression as well reactive oxygen species (ROS) and lipid peroxidation (LPO) generation in LCSCs. Furthermore, IFN-γ exposure upregulated PD-L1 expression and its mitochondrial translocation, inducing dynamin-related protein 1 (Drp1)-dependent mitochondrial fission and correlating with glycolytic metabolism reprogramming in LCSCs. The genetic intervention of PD-L1 promoted ferroptosis-dependent anti-tumor effects of Sora, reduced glycolytic metabolism reprogramming, and inhibited cancer stemness of HCC in vitro and in vivo. Our results revealed a novel mechanism that IFN-γ exposure-induced mitochondrial translocation of PD-L1 enhanced glycolytic reprogramming to mediate the GPX4-dependent ferroptosis resistance and cancer stemness in LCSCs. This study provided new insights into the role of mitochondrial PD-L1-Drp1-GPX4 signal axis in regulating IFN-γ exposure-associated cancer stemness in LCSCs and verified that PD-L1-targeted intervention in combination with Sora might achieve promising synergistic anti-HCC effects.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Sorafenibe/farmacologia , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Interferon gama/genética , Interferon gama/metabolismo , Ferroptose/genética , Linhagem Celular Tumoral , Microambiente Tumoral
15.
J Chem Phys ; 160(4)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38258930

RESUMO

Glass transition, commonly manifested upon cooling a liquid, is continuous and cooling rate dependent. For decades, the thermodynamic basis in liquid-glass transition has been at the center of debate. Here, long-time isothermal annealing was conducted via molecular dynamics simulations for metallic glasses to explore the connection of physical aging in supercooled liquid and glassy states. An anomalous two-step aging is observed in various metallic glasses, exhibiting features of supercooled liquid dynamics in the first step and glassy dynamics in the second step, respectively. Furthermore, the transition potential energy is independent of initial states, proving that it is intrinsic for a metallic glass at a given temperature. We propose that the observed dynamic transition from supercooled liquid dynamics to glassy dynamics could be glass transition manifested isothermally. On this basis, glass transition is no longer cooling rate dependent, but is shown as a clear phase boundary in the temperature-energy phase diagram. Hence, a modified out-of-equilibrium phase diagram is proposed, providing new insights into the nature of glass transition.

16.
Signal Transduct Target Ther ; 9(1): 11, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38177135

RESUMO

Non-small cell lung cancer (NSCLC) ranks as one of the leading causes of cancer-related deaths worldwide. Despite the prominence and effectiveness of kinase-target therapies in NSCLC treatment, these drugs are suitable for and beneficial to a mere ~30% of NSCLC patients. Consequently, the need for novel strategies addressing NSCLC remains pressing. Deubiquitinases (DUBs), a group of diverse enzymes with well-defined catalytic sites that are frequently overactivated in cancers and associated with tumorigenesis and regarded as promising therapeutic targets. Nevertheless, the mechanisms by which DUBs promote NSCLC remain poorly understood. Through a global analysis of the 97 DUBs' contribution to NSCLC survival possibilities using The Cancer Genome Atlas (TCGA) database, we found that high expression of Josephin Domain-containing protein 2 (JOSD2) predicted the poor prognosis of patients. Depletion of JOSD2 significantly impeded NSCLC growth in both cell/patient-derived xenografts in vivo. Mechanically, we found that JOSD2 restricts the kinase activity of LKB1, an important tumor suppressor generally inactivated in NSCLC, by removing K6-linked polyubiquitination, an action vital for maintaining the integrity of the LKB1-STRAD-MO25 complex. Notably, we identified the first small-molecule inhibitor of JOSD2, and observed that its pharmacological inhibition significantly arrested NSCLC proliferation in vitro/in vivo. Our findings highlight the vital role of JOSD2 in hindering LKB1 activity, underscoring the therapeutic potential of targeting JOSD2 in NSCLC, especially in those with inactivated LKB1, and presenting its inhibitors as a promising strategy for NSCLC treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Enzimas Desubiquitinantes , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Genes Supressores de Tumor , Fígado/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Enzimas Desubiquitinantes/genética , Enzimas Desubiquitinantes/metabolismo
17.
Int J Med Sci ; 21(2): 284-298, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38169754

RESUMO

Ischemic stroke ranks among the foremost clinical causes of mortality and disability, instigating neuronal degeneration, fatalities, and various sequelae. While standard treatments, such as intravenous thrombolysis and endovascular thrombectomy, prove effective, they come with limitations. Hence, there is a compelling need to develop neuroprotective agents capable of improving the functional outcomes of the nervous system. Numerous preclinical studies have demonstrated that lithium can act in multiple molecular pathways, including glycogen synthase kinase 3(GSK-3), the Wnt signaling pathway, the mitogen-activated protein kinase (MAPK)/ extracellular signal-regulated kinase (ERK) signaling pathway, brain-derived neurotrophic factor (BDNF), mammalian target of rapamycin (mTOR), and glutamate receptors. Through these pathways, lithium has been shown to affect inflammation, autophagy, apoptosis, ferroptosis, excitotoxicity, and other pathological processes, thereby improving central nervous system (CNS) damage caused by ischemic stroke. Despite these promising preclinical findings, the number of clinical trials exploring lithium's efficacy remains limited. Additional trials are imperative to thoroughly ascertain the effectiveness and safety of lithium in clinical settings. This review delineates the mechanisms underpinning lithium's neuroprotective capabilities in the context of ischemic stroke. It elucidates the intricate interplay between these mechanisms and sheds light on the involvement of mitochondrial dysfunction and inflammatory markers in the pathophysiology of ischemic stroke. Furthermore, the review offers directions for future research, thereby advancing the understanding of the potential therapeutic utility of lithium and establishing a theoretical foundation for its clinical application.


Assuntos
AVC Isquêmico , Fármacos Neuroprotetores , Humanos , Lítio/farmacologia , Lítio/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , AVC Isquêmico/tratamento farmacológico , Quinase 3 da Glicogênio Sintase , Apoptose
18.
Clin Exp Otorhinolaryngol ; 17(1): 85-97, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38246983

RESUMO

OBJECTIVES: The necessity to develop a method for prognostication and to identify novel biomarkers for personalized medicine in patients with head and neck squamous cell carcinoma (HNSCC) cannot be overstated. Recently, pathomics, which relies on quantitative analysis of medical imaging, has come to the forefront. CXCL8, an essential inflammatory cytokine, has been shown to correlate with overall survival (OS). This study examined the relationship between CXCL8 mRNA expression and pathomics features and aimed to explore the biological underpinnings of CXCL8. METHODS: Clinical information and transcripts per million mRNA sequencing data were obtained from The Cancer Genome Atlas (TCGA)-HNSCC dataset. We identified correlations between CXCL8 mRNA expression and patient survival rates using a Kaplan-Meier survival curve. A retrospective analysis of 313 samples diagnosed with HNSCC in the TCGA database was conducted. Pathomics features were extracted from hematoxylin and eosin-stained images, and then the minimum redundancy maximum relevance, with recursive feature elimination (mRMR-RFE) method was applied, followed by screening with the logistic regression algorithm. RESULTS: Kaplan-Meier curves indicated that high expression of CXCL8 was significantly associated with decreased OS. The logistic regression pathomics model incorporated 16 radiomics features identified by the mRMR-RFE method in the training set and demonstrated strong performance in the testing set. Calibration plots showed that the probability of high gene expression predicted by the pathomics model was in good agreement with actual observations, suggesting the model's high clinical applicability. CONCLUSION: The pathomics model of CXCL8 mRNA expression serves as an effective tool for predicting prognosis in patients with HNSCC and can aid in clinical decision-making. Elevated levels of CXCL8 expression may lead to reduced DNA damage and are associated with a pro-inflammatory tumor microenvironment, offering a potential therapeutic target.

19.
ACS Nano ; 18(1): 703-712, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38133597

RESUMO

Two-dimensional ferromagnetic materials (2D-FMs) are expected to become ideal candidates for low-power, high-density information storage in next-generation spintronics devices due to their atomically ultrathin and intriguing magnetic properties. However, 2D-FMs with room-temperature Curie temperatures (Tc) are still rarely reported, which greatly hinders their research progress and practical applications. Herein, ultrathin Cu-doped Cr7Te8 FMs were successfully prepared and can achieve above-room-temperature ferromagnetism with perpendicular magnetic anisotropy via a facile chemical vapor deposition (CVD) method, which can be controlled down to an atomic thin layer of ∼3.4 nm. STEM-EDX quantitative analysis shows that the proportion of Cu to metal atoms is ∼5%. Moreover, based on the anomalous Hall effect (AHE) measurements in a six-terminal Hall bar device without any encapsulation as well as an out-of-plane magnetic field, the maximum Tc achieved ∼315 K when the thickness of the sample is ∼28.8 nm; even the ultrathin 7.6 nm sample possessed a near-room-temperature Tc of ∼275 K. Meanwhile, theoretical calculations elucidated the mechanism of the ferromagnetic enhancement of Cu-doped Cr7Te8 nanosheets. More importantly, the ferromagnetism of CVD-synthesized Cu-doped CrSe nanosheets can also be maintained above room temperature. Our work broadens the scope on room-temperature ferromagnets and their heterojunctions, promoting fundamental research and practical applications in next-generation spintronics.

20.
ACS Appl Mater Interfaces ; 16(1): 1066-1073, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38113538

RESUMO

Two-dimensional (2D) transistors are promising for potential applications in next-generation semiconductor chips. Owing to the atomically thin thickness of 2D materials, the carrier scattering from interfacial Coulomb scatterers greatly suppresses the carrier mobility and hampers transistor performance. However, a feasible method to quantitatively determine relevant Coulomb scattering parameters from interfacial long-range scatterers is largely lacking. Here, we demonstrate a method to determine the Coulomb scattering strength and the density of Coulomb scattering centers in InSe transistors by comprehensively analyzing the low-frequency noise and transport characteristics. Moreover, the relative contributions from long-range and short-range scattering in the InSe transistors can be distinguished. This method is employed to make InSe transistors consisting of various interfaces a model system, revealing the profound effects of different scattering sources on transport characteristics and low-frequency noise. Quantitatively accessing the scattering parameters of 2D transistors provides valuable insight into engineering the interfaces of a wide spectrum of ultrathin-body transistors for high-performance electronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...